Update Getting started authored by Doriann Blain's avatar Doriann Blain
...@@ -38,7 +38,7 @@ In this example, we will simulate the atmosphere of CoRoT-4 b, a well studied pl ...@@ -38,7 +38,7 @@ In this example, we will simulate the atmosphere of CoRoT-4 b, a well studied pl
Copy and edit the file _inputs/example.nml_, rename it _corot-4b.nml_. An extended description of the input parameters is available [here](Documentation). Copy and edit the file _inputs/example.nml_, rename it _corot-4b.nml_. An extended description of the input parameters is available [here](Documentation).
1. Open _inputs/_corot-4b.nml_ with any notepad editor. 1. Open _inputs/\_corot-4b.nml_ with any notepad editor.
2. Edit the suffix of your future output files: 2. Edit the suffix of your future output files:
```text ```text
output_files_suffix = 'corot-4b' ! suffix of the output files output_files_suffix = 'corot-4b' ! suffix of the output files
...@@ -136,7 +136,7 @@ This is nice, but the resolution is quite low. ...@@ -136,7 +136,7 @@ This is nice, but the resolution is quite low.
This time, our goal will be to have more precise results. We will use our calculated temperature profile as input, and a higher resolution power. We will also add a stellar spectrum, and use an advanced mode to calculate the eddy diffusion coefficient. To keep it simple, we will consider only KCl and Na2S clouds. This time, our goal will be to have more precise results. We will use our calculated temperature profile as input, and a higher resolution power. We will also add a stellar spectrum, and use an advanced mode to calculate the eddy diffusion coefficient. To keep it simple, we will consider only KCl and Na2S clouds.
## Setup ## Setup
1. Download the R500 compressed *k*-tables [here](https://gitlab.obspm.fr/dblain/exorem/-/tree/master/data/k_coefficients_tables). 1. Download the R500 compressed *k*-tables [here](https://lesia.obspm.fr/exorem/ktables/default/xz/).
2. Decompress them inside the _data/k_coefficients_tables_ directory executing e.g. `tar xJvf R500.tar.xz R500`. 2. Decompress them inside the _data/k_coefficients_tables_ directory executing e.g. `tar xJvf R500.tar.xz R500`.
3. It is always better to use a stellar spectrum rather than a blackbody spectrum. Here we will download a [BT-Settl](http://svo2.cab.inta-csic.es/theory/newov2/index.php) spectrum model. Take T_eff = 6200 K, Log(g) = 4.5, and a metallicity of 0. Put the ASCII file (download it by marking the ASCII file then by clicking "retrieve") into the _data/stellar_spectra_ directory and rename it e.g. "spectrum_BTSettl_6200K_logg4.5_met0.dat" (mind the .dat extension). Replace the header of the file by the following: 3. It is always better to use a stellar spectrum rather than a blackbody spectrum. Here we will download a [BT-Settl](http://svo2.cab.inta-csic.es/theory/newov2/index.php) spectrum model. Take T_eff = 6200 K, Log(g) = 4.5, and a metallicity of 0. Put the ASCII file (download it by marking the ASCII file then by clicking "retrieve") into the _data/stellar_spectra_ directory and rename it e.g. "spectrum_BTSettl_6200K_logg4.5_met0.dat" (mind the .dat extension). Replace the header of the file by the following:
```text ```text
...@@ -182,7 +182,6 @@ This time, our goal will be to have more precise results. We will use our calcul ...@@ -182,7 +182,6 @@ This time, our goal will be to have more precise results. We will use our calcul
cloud_particle_radius = 5e-6, 5e-6 ! (m) mean radius of the cloud particles (fixed radius modes) cloud_particle_radius = 5e-6, 5e-6 ! (m) mean radius of the cloud particles (fixed radius modes)
sedimentation_parameter = 5, 5 ! sedimentation parameter of the clouds (fixed sedimentation mode) sedimentation_parameter = 5, 5 ! sedimentation parameter of the clouds (fixed sedimentation mode)
cloud_particle_density = 1980, 1860 ! (kg.m-3) density of the clouds particles cloud_particle_density = 1980, 1860 ! (kg.m-3) density of the clouds particles
cloud_molar_mass = 74.5513e-3, 78.0452e-3 ! (kg.mol-1) molar mass of the clouds particles
reference_wavenumber = 1e4, 1e4 ! (cm-1) [for diagnostic] wavenumber for cloud optical depth output reference_wavenumber = 1e4, 1e4 ! (cm-1) [for diagnostic] wavenumber for cloud optical depth output
``` ```
10. Update the retrieval parameters, we will use our previously retrieved temperature profile, and a lower number of iterations since we should be close to a solution: 10. Update the retrieval parameters, we will use our previously retrieved temperature profile, and a lower number of iterations since we should be close to a solution:
...@@ -240,11 +239,11 @@ Not happy with the figures you get ? What if for example you wanted to see the c ...@@ -240,11 +239,11 @@ Not happy with the figures you get ? What if for example you wanted to see the c
``` ```
4. If you want to see the effect of the clouds on the transmission spectrum, you can try: 4. If you want to see the effect of the clouds on the transmission spectrum, you can try:
```python ```python
plot_transmission_spectrum('./outputs/exorem/example_R50_beta8.h5', wvn2wvl=True, cloud_coverage=0, plot_transmission_spectrum('./outputs/exorem/corot-4b_R500.h5', wvn2wvl=True, cloud_coverage=0,
color='r', label='no cloud') color='r', label='no cloud')
plot_transmission_spectrum('./outputs/exorem/example_R50_beta8.h5', wvn2wvl=True, cloud_coverage=0.5, plot_transmission_spectrum('./outputs/exorem/corot-4b_R500.h5', wvn2wvl=True, cloud_coverage=0.5,
color='g', label='50% cover') color='g', label='50% cover')
plot_transmission_spectrum('./outputs/exorem/example_R50_beta8.h5', wvn2wvl=True, cloud_coverage=1, plot_transmission_spectrum('./outputs/exorem/corot-4b_R500.h5', wvn2wvl=True, cloud_coverage=1,
color='b', label='full cover') color='b', label='full cover')
plt.xlim([0.3e-6, 2e-6]) plt.xlim([0.3e-6, 2e-6])
plt.gca().set_xscale('log') plt.gca().set_xscale('log')
... ...
......